martes, 27 de abril de 2010


Fast Ethernet o Ethernet de alta velocidad es el nombre de una serie de estándares de IEEE de redes Ethernet de 100 Mbps (megabits por segundo). El nombre Ethernet viene del concepto físico de ether. En su momento el prefijo fast se le agregó para diferenciarla de la versión original Ethernet de 10 Mbps.
Debido al incremento de la capacidad de almacenamiento y en el poder de procesamiento, los Pc’s actuales tienen la posibilidad de manejar gráficos de gran calidad y aplicaciones multimedia complejas. Cuando estos ficheros son almacenados y compartidos en una red, las transferencias de un cliente a otro producen un gran uso de los recursos de la red.
Las redes tradicionales operaban entre 4 y 16 Mbps. Más del 40 % de todos los Pc’s están conectados a Ethernet. Tradicionalmente Ethernet trabajaba a 10 Mbps. A estas velocidades,dado que las compañías producen grandes ficheros, pueden tener grandes demoras cuando envían los ficheros a través de la red. Estos retrasos producen la necesidad de mayor velocidad en las redes.
Fast Ethernet no es hoy por hoy la más rápida de las versiones de Ethernet, siendo actualmente Gigabit Ethernet y 10 Gigabit Ethernet las más veloces.

Hoy en día se puede hacer la siguiente clasificación de las redes de protocolo Ethernet:
- Ethernet (también llamada Ethernet original): Hasta 10 mbps.- Fast Ethernet: Hasta 100 Mbps.- Gigabit Ethernet: Hasta 1000 Mbps.- 10 Gigabit Ethernet.
Los siguientes factores fueron determinantes a la hora de implantar Fast Ethernet:
El incremento de las velocidades de los procesadores
El incremento de los usuarios de las redes
Las nuevas aplicaciones intensivas en ancho de banda usadas en las redes.
Cada uno de estos cambios añaden el incremento de carga localizada en la red.
Fast Ethernet fue instaurado en 1995, siendo la versión de Ethernet más rápida durante 3 años más, hasta que fue superada y reemplazada por la versión Gigabit Ethernet.

ETHERNET


Ethernet es un estándar de redes de computadoras de área local con acceso al medio por contienda CSMA/CDes Acceso Múltiple por Detección de Portadora con Detección de Colisiones"), es una técnica usada en redes Ethernet para mejorar sus prestaciones. El nombre viene del concepto físico de ether. Ethernet define las características de cableado y señalización de nivel físico y los formatos de tramas de datos del nivel de enlace de datos del modelo OSI..La Ethernet se tomó como base para la redacción del estándar internacional IEEE 802.3. Usualmente se toman Ethernet e IEEE 802.3 como sinónimos. Ambas se diferencian en uno de los campos de la trama de datos. Las tramas Ethernet e IEEE 802.3 pueden coexistir en la misma red.

Los estándares de este grupo no reflejan necesariamente lo que se usa en la práctica, aunque a diferencia de otros grupos este suele estar cerca de la realidad.
Versiones de 802.3
Estándar Ethernet Fecha Descripción
Ethernet experimental 1972 (patentado en 1978) 2,85 Mbit/s sobre cable coaxial en topología de bus.
Ethernet II (DIX v2.0) 1982 10 Mbit/s sobre coaxial fino (thinnet) - La trama tiene un campo de tipo de paquete. El protocolo IP usa este formato de trama sobre cualquier medio.
IEEE 802.3 1983 10BASE5 10 Mbit/s sobre coaxial grueso (thicknet). Longitud máxima del segmento 500 metros - Igual que DIX salvo que el campo de Tipo se substituye por la longitud.
802.3a 1985 10BASE2 10 Mbit/s sobre coaxial fino (thinnet o cheapernet). Longitud máxima del segmento 185
m
802.3b 1985 10BROAD36
802.3c 1985 Especificación de repetidores de 10 Mbit/s
802.3d 1987 FOIRL (Fiber-Optic Inter-Repeater Link) enlace de fibra óptica entre repetidores.
802.3e 1987 1BASE5 o StarLAN
802.3i 1990 10BASE-T 10 Mbit/s sobre par trenzado no apantallado (UTP). Longitud máxima del segmento 100 metros.
802.3j 1993 10BASE-F 10 Mbit/s sobre fibra óptica. Longitud máxima del segmento 1000 metros.
802.3u 1995 100BASE-TX, 100BASE-T4, 100BASE-FX Fast Ethernet a 100 Mbit/s con auto-negociación de velocidad.
802.3x 1997 Full Duplex (Transmisión y recepción simultáneos) y control de flujo.
802.3y 1998 100BASE-T2 100 Mbit/s sobre par trenzado no apantallado(UTP). Longitud máxima del segmento 100 metros
802.3z 1998 1000BASE-X Ethernet de 1 Gbit/s sobre fibra óptica.
802.3ab 1999 1000BASE-T Ethernet de 1 Gbit/s sobre par trenzado no apantallado
802.3ac 1998 Extensión de la trama máxima a 1522 bytes (para permitir las "Q-tag") Las Q-tag incluyen información para *802.1Q VLAN y manejan prioridades según el estandar 802.1p.
802.3ad 2000 Agregación de enlaces paralelos (Trunking).
802.3ae 2003 Ethernet a 10 Gbit/s ; 10GBASE-SR, 10GBASE-LR
IEEE 802.3af 2003 Alimentación sobre Ethernet (PoE).
802.3ah 2004 Ethernet en la última milla.
802.3ak 2004 10GBASE-CX4 Ethernet a 10 Gbit/s sobre cable bi-axial.
802.3an 2006 10GBASE-T Ethernet a 10 Gbit/s sobre par trenzado no apantallado (UTP)
802.3ap en proceso (draf) Ethernet de 1 y 10 Gbit/s sobre circuito impreso.
802.3aq en proceso (draf) 10GBASE-LRM Ethernet a 10 Gbit/s sobre fibra óptica multimodo.
802.3ar en proceso (draf) Gestión de Congestión
802.3as en proceso (draf) Extensión de la trama

ESPECIFICACIONES


Estos discos tienen una capacidad de 650 Megabytes de datos o 74 minutos de música de muy alta calidad. De un modo genérico podemos decir que el Compact Disc ha revolucionado el modo en que hoy dia se distribuye todo tipo de información electrónica. Los métodos comunes de impresión en los CD son la serigrafía y la impresión Offset. En el caso de los CD-R y CD-RW se usa oro, plata y aleaciones de las mismas que por su ductilidad permite a los láseres grabar sobre ella, cosa que no se podría hacer sobre el aluminio con láseres de baja potencia.Velocidad de la exploración: 1,2–1,4 m/s, equivale aproximadamente a entre 500 rpm (revoluciones por minuto) y 200 rpm, en modo de lectura CLV (Constant Linear Velocity, 'Velocidad Lineal Constante').
Distancia entre pistas: 1,6 µm.
Diámetro del disco: 120 u 80 mm.
Grosor del disco: 1,2 mm.
Radio del área interna del disco: 25 mm.
Radio del área externa del disco: 58 mm.
Diámetro del orificio central: 15 mm.
Tipos de disco compacto:
Sólo lectura: CD-ROM (Compact Disc - Read Only Memory).
Grabable: CD-R (Compact Disc - Recordable).
Regrabable: CD-RW (Compact Disc - Re-Writable).
De audio: CD-DA (Compact Disc - Digital Audio).
Un CD de audio se reproduce a una velocidad tal que se leen 150 KB por segundo. Esta velocidad base se usa como referencia para identificar otros lectores como los de ordenador, de modo que si un lector indica 24x, significa que lee 24 x 150 kB = 3.600 kB/s, aunque se ha de considerar que los lectores con indicación de velocidad superior a 4x no funcionan con velocidad angular variable como los lectores de CD-DA, sino que emplean velocidad de giro constante, siendo el radio obtenible por la fórmula anterior el máximo alcanzable (esto es, al leer los datos grabados junto al borde exterior del disco).El área del disco es de 86,05 cm², de modo que la longitud del espiral grabable será de 86,05/1,6 = 5,38 km. Con una velocidad de exploración de 1,2 m/s, el tiempo de duración de un CD-DA es 80 minutos, o alrededor de 700 MB de datos. Si el diámetro del disco en vez de 120 milímetros fuera 115 mm, el máximo tiempo de duración habría sido 68 minutos, es decir, 12 minutos menos.
Tipos de CD
Mini-CD
CD-A
CD-ROM
CD-R
CD-RW
CD+G
VCD

HISTORIA DEL C D


Los discos compactos (Audio Compact Discs (CD-DA)) fueron introducidos en el mercado de audio por primera vez en 1980 de la mano de Philips y Sony como alternativa a los discos de vinilo y de lo cassettes. En 1984 ambas compañías extendieron la tecnología para que se pudiera almacenar y recuperar datos y con ello nació el disco CD-ROM. Desde entonces el compact disc ha cambiado de un modo significativo el modo en el que escuchamos música y almacenamos datos. El disco compacto (conocido popularmente como CD por las siglas en inglés de Compact Disc) es un soporte digital óptico utilizado para almacenar cualquier tipo de información (audio, imágenes, vídeo, documentos y otros datos).

A pesar de que puede haber variaciones en la composición de los materiales empleados en la fabricación de los discos, todos siguen un mismo patrón: los discos compactos se hacen de un disco grueso, de 1,2 milímetros, de policarbonato de plástico, al que se le añade una capa reflectante de aluminio, utilizada para obtener más longevidad de los datos, que reflejará la luz del láser (en el rango espectro infrarrojo y por tanto no apreciable visualmente); posteriormente se le añade una capa protectora de laca, misma que actúa como protector del aluminio y, opcionalmente, una etiqueta en la parte superior. Los métodos comunes de impresión en los CD son la serigrafía y la impresión Offset. En el caso de los CD-R y CD-RW se usa oro, plata y aleaciones de las mismas que por su ductilidad permite a los láseres grabar sobre ella, cosa que no se podría hacer sobre el aluminio con láseres de baja potencia.

jueves, 15 de abril de 2010

Básicamente, una VPN es una red privada que utiliza una red pública (normalmente Internet) para conectar sitios distantes y usuarios alejados entre si. En lugar de utilizar una conexión dedicada contratada a una compañía, una red privada VPN usa conexiones virtuales, enrutadas por Internet desde la red de la compañía, hasta el lugar remoto.

VENTAJAS DE VPN


Una red privada virtual VPN bien diseñada, puede dar muchos beneficios a una compañía. Algunas ventajas son:
Extensión de conectividad a nivel geográfico
Mejoras de seguridad
Reduce costes al ser instalado frente a las redes WAN más utilizadas
Mejora la productividad
Simplifica la topología de red
Proporciona oportunidades de comunicación adicionales
Las funciones que una red VPN debe incorporar son seguridad, fiabilidad, escalabilidad, gestión de red y políticas de gestión.

Por lo tanto, el sistema VPN brinda una conexión segura a un bajo costo, ya que todo lo que se necesita es el hardware de ambos lados. Sin embargo, no garantiza una calidad de servicio comparable con una línea dedicada, ya que la red física es pública y por lo tanto no está garantizada.

REDES VNP


Las redes de área local (LAN) son las redes internas de las organizaciones, es decir las conexiones entre los equipos de una organización particular. Estas redes se conectan cada vez con más frecuencia a Internet mediante un equipo de interconexión. Muchas veces, las empresas necesitan comunicarse por Internet con filiales, clientes o incluso con el personal que puede estar alejado geográficamente.
Sin embargo, los datos transmitidos a través de Internet son mucho más vulnerables que cuando viajan por una red interna de la organización, ya que la ruta tomada no está definida por anticipado, lo que significa que los datos deben atravesar una infraestructura de red pública que pertenece a distintas entidades. Por esta razón, es posible que a lo largo de la línea, un usuario entrometido, escuche la red o incluso secuestre la señal. Por lo tanto, la información confidencial de una organización o empresa no debe ser enviada bajo tales condiciones.

viernes, 26 de marzo de 2010

EL MODELO OSI Y LAS 7 CAPAS



MODELO OSI


Concepto de Modelo OSI
El Modelo de Referencia de Interconexión de Sistemas Abiertos, conocido mundialmente como Modelo OSI (Open System Interconnection), fue creado por la ISO (Organizacion Estandar Internacional) y en él pueden modelarse o referenciarse diversos dispositivos que reglamenta la ITU (Unión de Telecomunicación Internacional), con el fin de poner orden entre todos los sistemas y componentes requeridos en la transmisión de datos, además de simplificar la interrelación entre fabricantes . Así, todo dispositivo de cómputo y telecomunicaciones podrá ser referenciado al modelo y por ende concebido como parte de un sistemas interdependiente con características muy precisas en cada nivel.
Esta idea da la pauta para comprender que el modelo OSI existe potencialmente en todo sistema de cómputo y telecomunicaciones, pero que solo cobra importancia al momento de concebir o llevar a cabo la transmisión de datos.



El Modelo OSI cuenta con 7 capas o niveles:





Capa Física
Capa de Enlace de Datos
Capa de Red
Capa de Transporte
Capa de Sesión
Capa de Presentación
Capa de Aplicación


1. Capa física
Es la encargada de transmitir los bits de información por la línea o medio utilizado para la transmisión. Se ocupa de las propiedades físicas y características eléctricas de los diversos componentes, de la velocidad de transmisión, si esta es unidireccional o bidireccional (simplex, duplex o flull-duplex).
También de aspectos mecánicos de las conexiones y terminales, incluyendo la interpretación de las señales eléctricas.
Como resumen de los cometidos de esta capa, podemos decir que se encarga de transformar un paquete de información binaria en una sucesión de impulsos adecuados al medio físico utilizado en la transmisión. Estos impulsos pueden ser eléctricos (transmisión por cable), electromagnéticos (transmisión Wireless) o luminosos (transmisón óptica). Cuando actúa en modo recepción el trabajo es inverso, se encarga de transformar estos impulsos en paquetes de datos binarios que serán entregados a la capa de enlace.
2. Capa de enlace
Puede decirse que esta capa traslada los mensajes hacia y desde la capa física a la capa de red. Especifica como se organizan los datos cuando se transmiten en un medio particular. Esta capa define como son los cuadros, las direcciones y las sumas de control de los paquetes Ethernet.
Además del direccionamiento local, se ocupa de la detección y control de errores ocurridos en la capa física, del control del acceso a dicha capa y de la integridad de los datos y fiabilidad de la transmisión. Para esto agrupa la información a transmitir en bloques, e incluye a cada uno una suma de control que permitirá al receptor comprobar su integridad. Los datagramas recibidos son comprobados por el receptor. Si algún datagrama se ha corrompido se envía un mensaje de control al remitente solicitando su reenvío.



3.Capa de Red
Esta capa se ocupa de la transmisión de los datagramas (paquetes) y de encaminar cada uno en la dirección adecuada tarea esta que puede ser complicada en redes grandes como Internet, pero no se ocupa para nada de los errores o pérdidas de paquetes. Define la estructura de direcciones y rutas de Internet. A este nivel se utilizan dos tipos de paquetes: paquetes de datos y paquetes de actualización de ruta. Como consecuencia esta capa puede considerarse subdividida en dos:
Transporte: Encargada de encapsular los datos a transmitir (de usuario). Utiliza los paquetes de datos. En esta categoría se encuentra el protocolo IP.
Conmutación: Esta parte es la encargada de intercambiar información de conectividad específica de la red. Los routers son dispositivos que trabajan en este nivel y se benefician de estos paquetes de actualización de ruta. En esta categoría se encuentra el protocolo ICMP responsable de generar mensajes cuando ocurren errores en la transmisión y de un modo especial de eco que puede comprobarse mediante ping.
Los protocolos más frecuentemente utilizados en esta capa son dos: X.25 e IP.
4. Capa de Transporte
Esta capa se ocupa de garantizar la fiabilidad del servicio, describe la calidad y naturaleza del envío de datos. Esta capa define cuando y como debe utilizarse la retransmisión para asegurar su llegada. Para ello divide el mensaje recibido de la capa de sesión en trozos (datagramas), los numera correlativamente y los entrega a la capa de red para su envío.
Durante la recepción, si la capa de Red utiliza el protocolo IP, la capa de Transporte es responsable de reordenar los paquetes recibidos fuera de secuencia. También puede funcionar en sentido inverso multiplexando una conexión de transporte entre diversas conexiones de datos. Este permite que los datos provinientes de diversas aplicaciones compartan el mismo flujo hacia la capa de red.
Un ejemplo de protocolo usado en esta capa es TCP, que con su homólogo IP de la capa de Red, configuran la suite TCP/IP utilizada en Internet, aunque existen otros como UDP, que es una capa de transporte utilizada también en Internet por algunos programas de aplicación.
5. Capa de Sesión
Es una extensión de la capa de transporte que ofrece control de diálogo y sincronización, aunque en realidad son pocas las aplicaciones que hacen uso de ella.
6. Capa de Presentación
Esta capa se ocupa de garantizar la fiabilidad del servicio, describe la calidad y naturaleza del envío de datos. Esta capa define cuando y como debe utilizarse la retransmisión para asegurar su llegada. Para ello divide el mensaje recibido de la capa de sesión en trozos (datagramas), los numera correlativamente y los entrega a la capa de red para su envío.
Durante la recepción, si la capa de Red utiliza el protocolo IP, la capa de Transporte es responsable de reordenar los paquetes recibidos fuera de secuencia. También puede funcionar en sentido inverso multiplexando una conexión de transporte entre diversas conexiones de datos. Este permite que los datos provinientes de diversas aplicaciones compartan el mismo flujo hacia la capa de red.
Esta capa se ocupa de los aspectos semánticos de la comunicación, estableciendo los arreglos necesarios para que puedan comunicar máquinas que utilicen diversa representación interna para los datos. Describe como pueden transferirse números de coma flotante entre equipos que utilizan distintos formatos matemáticos.
En teoría esta capa presenta los datos a la capa de aplicación tomando los datos recibidos y transformándolos en formatos como texto imágenes y sonido. En realidad esta capa puede estar ausente, ya que son pocas las aplicaciones que hacen uso de ella.
7. Capa de Aplicación
Esta capa describe como hacen su trabajo los programas de aplicación (navegadores, clientes de correo, terminales remotos, transferencia de ficheros etc). Esta capa implementa la operación con ficheros del sistema. Por un lado interactúan con la capa de presentación y por otro representan la interfaz con el usuario, entregándole la información y recibiendo los comandos que dirigen la comunicación.